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Using molecular orbital theory and experimental bond orders, valency structures for 
C~02~ -, s~oe~ - and cis (CH3NO)2 are deduced. :For the latter system, the wave function for a 
structure that violates the octet rule for the first row elements is contrasted with that pertain- 
ing to the double quartet hypothesis [14]. 

Valenzstrukturen fiir C202~ -, $202C and cis (CHaNO)~ werden mit Hilfe dcr MO-Theorie 
und experimenteller Werte fiir die Bindungsordnungen abgeleitet. Ffir das letzte der auf- 
geziihlten Systeme wird die Wellenfunktion fiir eine Struktur, welche die Oktettregel fiir die 
Elemente der ersten Reihe des Periodensystems verletzt, verglichen mit einer Funktion, die 
der Doppel-Quarte~t-Hypothese [14] gehorcht. 

A l'aide de la thgorie des orbitales mol6culaires et des ordres de liaison exp6rimentaux, 
on d6duit des structures ~lectroniques, au cadre des formules m~som6res, pour CeO~-, S~O~- 
et cis-(CH3NO)~. Au dernier cas, la fonction d'onde correspondant s une formule qui manque 

la r6gle d'octet pour la premiere p6riode, est eonfront~e ~ celle d'apr~s l'hypoth~se du ((quar- 
tet double)) [14]. 

A de te rminan ta l  wave funct ion involving the or thonormal  orbitals Za and  Zb 
and  of the form 

( z,~+ff zb~ 2 

may be expanded as a linear combination of either orthogonal or non-orthogonal 
basis functions [10], Such expansions have been previously used [10] to obtain 
wave functions representing two sets of valency structures for NiO 4. The weights 
of these structures depended on ft. The Xa and Xb were oxygen and nitrogen symme- 
try orbitals for the mobile a-electrons. In the present paper, the most significant 
covalent valency structures for the A2Y 4 and A2Y 2 systems C20 ~- (which is iso- 
electronic with I~20~) , $20~- and cis (CI-I s 5TO)i will be obtained by consideration 
of experimental bond orders and the extent of delocalization of Y-atom lone-pair 
electrons into an antibonding AA orbital. For these systems, the classical valency 
structures which involve no such delocalization, are of the types (a), (b) and (e). 
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The adjacent charge rule for positive charges [5] suggests tha t  such charges 
should induce considerable delocalization of oxygen ]one-pMr electrons for (b) 
and (c). The experimental geometries are consistent with this. 

Method of Calculation of Weights from Experimental Bond Orders 

The procedure to be used is tha t  described in the last section of reference [10]. 
Only a brief summary  will be given here to show how # (which governs the 

extent of delocalization of the Y-atom lone-pair electrons) may be related to the 
AA bond order. 

In  order to obtain a "good" wave function for the mobile a-electrons of N204 
(and for other A2Y a systems with D2h symmetry),  it has been shown necessary to 
construct [10] a wavefunction of the form 

T = C1 r + C2 q~2. 

~1 is the lowest energy molecular orbital configuration. ~b~ arises by raising 
two mobile a-electrons from the frontier a-orbital to the vacant  a-orbitM of 
lowest energy. The AA a-bond order* (P~) for T is calculated from equ. (21) of 
reference [10]. However, because a doubly excited configuration such as qb~ 
usually lies many  e.v. above r (i.e. [C 1 ] > [C2 [), it should be a reasonable 
approximation to assume that  ~ = ~51, and that  ~b 1 gives a fair estimate of the 
AA a-bond order. Equ. (21) of reference [10] then reduces to 

1 
P ~ a = l + , a  ~ " 

This type of expression also obtains for the relevant mobile a-electrons of C20~-, 
$20~- and (CI-I a NO)2, and for the ~-electrons of the latter system. Therefore # 
may  be approximately determined from the experimental AA a-bond order. The 
weights of the various types of valency structures may  then be cMeulated from the 
formulae of Tab. 3 in reference [10]. For q51, these formulae obtain for the corres- 
ponding ionic structures as well as for the covalent structures. We may  calculate 
the weights from r alone, and know that  configuration interaction will not 
affect the qualitative conclusions concerning the most significant covalent struc- 
tures except to increase the weights of some of them at the expense of the ionic 

Table 1. Weights o] N20 ~ Covalent Valency Structures. 
(The most significant structures are underlined; see ref. [10] for details of calculation). 

i / ~ = t  
i i  / ~ = t  

iii /~ = 1.22 
iv /x = 0.70 

Orthogonal Expansion 
T = C1 r + 

= q)l C a ~be 
I 

0.125 
0.2t5 
0.08 
0.2__~3 

III V I III V 

0.25 0.125 0.14 0.32 '0.23 

6:gi0.125 0.1510.36 0.26 
0.2-- I0.2_ 8 0.14:0.-  0.40 

0.05 0.23 0_~ 0.08 0.22 

Non-orthogonal Expansion 

T = q)l 
! 

I VII i 
I 

0.0 0.5 
0.0 0.5 

-0.040.48 ! 
o.12o.44 -o.o61 

I 

= C1 q)l + 
C2 

V I ]VII V 
i 

0.0 -0.03 0.65 0.07 
0.0 I -0.03:0.73 0.08 
0.06 -0.10 0.93 0.17 

0Al 0.49 -0.03 

* The numbering of the atoms, atomic orbitals, and the A2Y 4 symmetry orbitals are as 
given in references [5] and [I0]. Where helpful for S~02/- and (CH3NO)2, the symmetry orbitals 
and it are given the extra designations a- or ~r. For each system, the valency structures resem- 
bling I - VII of N204 are designated here by the same Roman numbers. 
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structures.  This is verified by  calculations i, ii, iii, and iv for N~O 4 [10], as shown 
in Tub. I. To calculate the weights f rom the more exact  expression for kP requires 
values for a second parameter  2 and for C1/C 2. These are difficult to  estimate f rom 
experimental  data.  

The following bond lengths [18] have been used to construct  bond-order 
bond-length curves : 

N N b o n d s : N ~ N  i . i 0 A ;  N = N i . 2 4 A ;  N - - N ~ . 4 8 A ;  
N O b o n d s :  N----_O i . 0 6 A ;  N = O  1 .20A;  N - - O  i . 4 4 A ;  
CC bonds:  C = C  i.334/~.; C - - C  1.397A ; C - - C  ~.504/~. 

Our conclusions do not  depend on the exact magni tudes  of  the bond orders. 

0 x a l a t e  A n i o n  

The most  precise deternfination of the C20~- geometry is t ha t  for the l i thium 
salt [3]. The CC bond length of i.561 +_ 0.0040 ~- is about  0.08 A longer than  tha t  
of  the central bond of  butadiene (J:.483 • 0.01 A, i.476 • 0.010 A) [2, 15]. I f  it 
is assumed tha t  the effect of  CC z-bonding on the CC bond length is similar in the 
two systems (V.E.S.C.F. molecular orbital estimates [4] of  their 7~ bond orders 
are both small: 0.1 for C~O~- and 0.2 for CaHd), the longer CC bond of C20 ~- m a y  
be a t t r ibuted to  oxygen ~-eleetron delocalization into the ant ibonding CC a- 
orbital. Approximate  V.E.S.C.F. molecular orbital calculations [5] suggest t h a t  
such delocalization can occur to a not  insignificant extent. Using the CC bond- 
order - -  bond length relation*, a CC bond order of  0.75 m a y  be calculated, which 
corresponds to # ~ 0.6. The types  of  valency structures to be considered are 
identical with those for N204 (see I - -  V I I  of  ref. [10]. The resulting weights for 
such structures for C~O~- are given in Tab. 2. 

Table 2. Weights o/C20~ -, $202~ - and ci8 (CHINO)2 Valency Structures 

0rthog. 0.32 
Non-orthog. 0.24 

Orthog. 0.08 
Non-orthog. - 0104 

Orthog. (a) 0.44 
Non-orthog. (a) 0.41 
Orthog. (~) 0.22 
Non-orthog. (u) 0.11 

Covalent 
III [ V 

C~02y 

0.16 ] 0.02 
! -0.06 L 

S~O~i - 

0.24 [ 0.18 
i 0.06 

(CH3NO)2 

0.06 0.00 
- 0.03 

0.22 0.06 
-0.05 

I Ionic 

V I I  I I  IV 

0.32 4 0.16 
0.32 0.32 0.t6 

I 0.08 0.24 
0.48 0.08 0.24 

0.44 0,06 
0.11 0.44 0.06 

0.22 0.22 
0.45 0.22 0.22 

u 

0.02 
0.02 

0.18 
0.t8 

0.0 
0.0 
0.06 
0.06 

* The C--C bond of butadiene is 0.02 • shorter than that of 1.504 ~ for a single bond. 
This may be attributed to the CC u-bonding. If  it is assumed that the CC u-bonding of C~O~ - 
also shortens its CC bond by 0.02 ]~, then the length of the CC a-bond is 1.58 A. This value has 
been used to calculate #. 
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Both expansions predict two significant types of covalent structures - -  I 
[i.e. (a) in this paper] and either I I I  or VII. 

#.@ @.b5 ~'@ 

A hybrid of I and VII stresses that  the OCO bond angles should be inter- 
mediate between those [19] of NO~- (tt5.4 ~ and NO 2 (i34 ~ 25~). The OCO angle 
of CaO ~- (t27.3 ~ • 0.3 ~ [3] is similar to that  of approximately 128 ~ [17] for CO~-. 
The C odd electron densitdy of CO~- is 0.64 [17], and generates weights of 0.18, 
0.92 and --0.10 for structures of types (f), (g) and (h). 

I 

/ A 0 . /  ~/e /.0.o.@ /..o.% 
d e f g h t 

Dith ion i te  A n i o n  

The SS bond length of SaO ~- is 2.389 • [7] and corresponds to a bond order 
of 0.36 [1]. $20 ~- is non-planar and so the distinction between <r- and ~-eleetrons 
is lost. (However, the planar configuration designations for orbitals and electrons 
will continue to be used here.) The oxygen ~- and ~-eleetrons can deloealize into 

1 
the antibonding orbital V2- (h2-- h3) between the S atoms. Such combined 

deloealization has been referred to as "z~"-delocalization previously [5]. The ~- 
1 1 

electron orbitals ~ -  ( ~  + ~3) and ] /~  ( ~ 2 -  za) must each be doubly filled 

forming non-bonding lone-pairs on the S atoms, because $20 ~- is non-planar. I f  it 
is assumed that  the oxygen ~- and ~-eleetrons are degenerate (a very reasonable, 
but not always exact assumption - -  however, it is quite satisfactory for the 
present purpose), then the ground-state configuration for the mobile electrons 
may be expressed as 

( ~=;o + 4 o \= ) #1 = (31)2 (81) 2 (81) 2 (81) 2 (81 )a (8~i)2 (112)2 \ / W /  t If" i ] B 

The relative extent of deloealization of t i e  s- and i-electrons is governed by 
v, which may be related to the bond angles 2 ~0 = 42 OSO and co--42 SSO 
through the overlap integrals. These integrals involving the sl-, i i -  and 1 2 atomic 
orbitals may be expressed as I51: 

S Zl ha d~ = - -  �89 N2 22 cos 0 f ~ ~2 dr 
~1 ha dT = - -  �89 N 2 2a sin q0 sin 0 ~ ~1 z~, dT 

in which, neglecting d-orbita]s, h a = N 2 (s 2 § ~2 Pa), ~ z l  Jr2 dT = z-electron overlap 
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integral for a planar system, and 0 = sin -1 (--cos m/cos ~0). Therefore ~ may 
be expressed as cosec F cot 0 with lim u = c~. For tetrahedral dispositions of 

the four S hybrid atomic orbitals (forming three bonds and one lone-pair), u = t.7, 
whereas for the SsO ~- geometry (2q0 = 108 ~ I11, m = 98 ~ t/, 99 ~ 23I), u = 1.5. 

The expansion of ~b 1 in terms of valency structure functions is more complicat- 
ed than for AsY ~ systems with 34 valenee-eleetrons. In  order that the molecular 
orbitals remain ortho-normal, r cannot be transformed in such a manner that the 
=- and 7-electron deloealizations are separated. Therefore a complete expansion 
of ~b 1 would generate many types of valency structures. To simplify the problem, 
it may be concluded that  since v = 4.5, 7e-electron delocalization must be consider- 
ably more extensive than is the 7-electron deloealization. Therefore it should be 
reasonable to neglect the deloealization of the latter electrons. ~b 1 may then be 
expressed as 

and expanded as described above for N~O~ and C~O~-. With #~= 1.2, the weights 
of Tab. 2 have been calculated. 

Only one important type of covalent structure obtains for the non-orthogonal 
expansion, i. e. VII. Such a structure stresses that the SO bonds for SsO ~- should 
be longer than those for SO s (SsO ~- 1.496 A, L5t5 A; SO s 1.4308 + 0.0002 A) 
[7, 16] because of a smaller value for the SO bond order. I t  is also consistent with 
the OSO angles being narrower than for SO s, (i) (or reference [18] p. 329), but 
wider than the HNH angles of NsIt a (SsO~- t08 ~ t1I; SOs t i9  ~ t91 _+ 2I; NsH~ 
t06 ~ 0 / ) [7, 16, 11]. 

The SO bond lengths of $20~- and SOs are near or similar to that of 1.40 A for 
SO double bonds [9]. The above valency structures for these systems do not 
suggest this, and it is presumably necessary to include d-orbitals of sulphur to 
account for the lengths. Such a more elaborate description of S~O~- may possibly 
modify our conclusions concerning the nature of its SS bond. The present calcula- 
tion is based on the assumption that the "z ~"-delocalisation is responsible for 
its lengthening. 

Cis Dimer of Nitrosomethane 
The NN bond length of eis (CHaNO)2 is 1.3i • 0.02 A [8] which corresponds 

to an NN bond order (P~) of ~ i . 6 .  The valency structure (e) involves an NN 
double bond. The reduction in bond order could arise from deloeMization of 
oxygen ~- and ~:electrons into the antibonding ~- and a-electron orbitMs between 
the nitrogen atoms. As remarked earlier in this paper, such delocalizations should 
be facilitated by the nitrogen positive charges. Two # parameters, #~ and #o, 
determine the extent of these delocalizations. I t  is necessary to also use the NO 
bond length in order to empirically determine these parameters. The NO length 
of t .3t  A corresponds to a NO bond order of ~ i . 5 " .  Assuming no configuration 

* Using molecular orbitM theory, LEROY et al. [13] have e~leul~ted NO and NN bond 
orders of t.425 and 1.237 for cis (CH~NO)~, ~nd t.466 and L320 for tr~ns (CH~NO)~. These 
correspond to NO lengths of L32 ~ and ~.31 ~, ~nd NN lengths of 1.4t ~ and 1.38 ,~. Earlier 
L ~ o u  [12l had c~lcul~ted NO and NN bond orders of 1.441 and :l.736 for the trans system 
which imply bond lengths of ~.32 A and t.29 ~. S~T~'S [20] simple Hfickel calculations give 
NN ~nd NO bond orders of (i) L725 and 1.448 (ii) 1.927 and L354. 
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interaction, the total NN and NO bond orders may be expressed as 

~I / / ] 1 t " P ~ 2 = l +  V2-=1+( / )~  + l+(#=)~J P2a ~ + (#~ + I + (,u~) - ~  ' " 

Using the  exper imen ta l  bond  orders, values  of  e i ther  S = 0.25 and #~ = 0.72 
or #~ = 0.25 and  #~ = 0.72 have  been obta ined .  Over lap  considerat ions  suggest  
t h a t  the  former set of  pa rame te r s  should  be preferred,  i. e. only  the  ~-eleetrons  
should apprec iab ly  delocalize. 

The g round-s ta te  a- and  ~-e lee t ron configurat ions are 

q51= (57) ~(sg? ~+( / )~]  ; r  (8~)~(s~)~ 1 + ( / ) ~  

The s y m m e t r y  orbi ta ls  57 . . .  s~ and s~ . . .  s~ are defined as 

8~ = / 7  (~ + ~); ~ = VT ( Q -  Q); 4 = / ~ -  (~ ; 8~ = l/2= ( ~  - ~ )  

The or thogonal  basis funct ions for the  expansions  of  ~b~ or ~b~ m a y  be expres- 
sed as l inear  combina t ions  of the  following s t ruc ture  funct ions  : 

1 

I 

~ v  

= [WWW I) ~2 q~3 q)~ w~ w~ wa we 

In these, ~ = ~ or h~ for the ~-eleetrons, and ~ for the ~-electrons. 
The non-orthogonal expansion of ~ or ~ involve (I) -- (4) together with 

o 1 ~ 1 2 
= Tr - + 1 /~oo~  + ~ o o ~  (7) 

~ t ~ . 
= ~ q~~ + ~ g  q~o~ + ~ qS~on 

Func t ions  (1) - -  (7) are those  for the  mobile  a- or ~-electrons  of  the  va lency  
s t ructures  of  types  ( I ) - -  (VII).  l~or these s t ructures ,  i t  is possible to be more  
expl ic i t  concerning electron spin designat ions  t han  for AzY~ systems.  I n  ([) - -  (VII)  
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a x or O represents an electron with sz = §189 or --�89 The weights of  these struc- 
tures  for ~ and  !/i~ are given in Tab.  2. 

CoY 
R RR RR RR 

I lI } I  

q~lo~ ~ ~'" 
RR RR RR R 

IV V WI VII 
The mos t  significant covalent  s t ructures  are type  I for the a-electrons and type  

V I I  for the ~r-electrons. Therefore it m a y  be deduced t h a t  u s t ructure  of type  V I I  
best  represents  the to ta l  electron distribution. Such a s t ructure  implies N N  and 
NO bond orders of  L5  which are similar to the  above exper imenta l  est imates.  
L~Z~ZTT [14] has suggested t ha t  a hybr id  of  (j) (and its mirror  image) and  (k) 
could perhaps  provide a reasonable description for t rans  (BrC6H 4 NO)~. Such a de- 
scription would not  be adequate  for cis (CII3NO)2 because it mus t  imply  (whatever  
the  weights of  each) t h a t  either the N N  or the  NO bond order is significantly 
smaller t han  the  exper imenta l  value. (k) is similar to V I I  but  avoids violation of 
the octet  rule b y  not  represent ing as a bonding pair  the  unpaired electrons with 
opposite spins on the N atoms.  A reason for this will now be given. 

~)  ~ R -201 R 

x / 
/ \  / \  
R j ~0\ R k /o~ 

The two-electron bond wave functions f o r V I I  (and all other  Structures in the  pres- 
ent type  of t r ea tment )  are of the I-Iei t ler--  London valence bond type,  i. e. result  
f rom the pairing of two electrons with opposite spins in a tomic orbitals on adjacent  
a toms.  For  example,  the wave  functions for the two bonds joining the  N a toms of V I I  

1 1 
are 1/~ - (I h~ h~l + ]h~ hnzl) and l/~- (l ~ ~3 n ] + I z~ ~nz I) �9 

In  (k), the  wave  functions for bonds indicated b y  heavy  lines between a toms 
are doubly occupied bond  orbitals - -  for example  in L. C. A. O. theory  

the  N N  a-bond wave funct ionis  ( l / h 2 ~ )  ~ (l/h~ i h~) ~ -  . The light lines represent  

two electrons wi th  opposite spins occupying different spat ial  orbitals. 
An orbi tal  wave  funct ion for the  N and 0 valence electrons of (k) for cis 

(CH3~TO),~ (but neglecting the  electrons involved in bonding to the  CHz groups) 
m a y  be obta ined b y  t ransforming the  following function :* 

�9 In (8) and (9), the h~ and h' a are N hybrid atomic orbitals directed towards the O 1 and O 4 
atoms. The a 1- and a.~- are the 0 2pr atomic orbitals directed towards the ~2 and Na atoms. 
In (9) the transformations of the 0 non-bonding s-, ~- and ~-atomie orbitals have not been 

t t t indicated. These could be of the types ]/~- (s + ~ + er) ~ , ]/~- (2 s - ~ - ~)~, i/- ~- (~ - ~)~, 

1 ~)~ and I/W (~ + 1 /2  (s - ~ ) ~ .  
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- ~  ~ / ~1 + l~'~ V / ~1 + ~2 \,2 ~ / h~ + h3~  ~ / h3 + ~ ~ o ~  
8 1 ) ' g  I 

(s) 

1 1 t 
On wri t ing (~,, = V2- (~t~ § h',), 7r,~ = t/~- (;~ + Jr~) and ~2a = V 2  (h2 § ha), 

(8) can be t r ans fo rmed  to 

- - - -  (7~42"~ 4 7g 4 84 

(9) 

which represents  (k). This shows why  the  two unpa i red  electrons on the  N a toms  
of (k) are not  ind ica ted  ~s bond-forming  in this  s t ructure ,  because t h e y  are no t  
conta ined  in bond  orbi tals .  

The geomet ry  of t rans  (CIlaNO)s (R~N = 1.22 A, R s o  = 1.25 A) [21] seems 
to be incomparab le  wi th  the  present  delocal izat ion t heo ry  because i t  impl ies  
complex  values for u o and  #~. The condi t ion t h a t  t h e y  shall  be real  is t h a t  

p l ~ < t + V ~ a  • 2 - -  2 P 2 3  �9 

The s t a n d a r d  devia t ions  of the  bond  lengths  of  t rans  [(CH3) 2 CHCI~I2NO]2 
(R~N = i .27 _+ 0.02 A, R ~ o  = i .30 _+ 0.02 ~)  [6] do no t  preclude t h e m  from 
sat is fying this  condit ion.  
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